
42 THE H A N K E L  T R A N S F O R M  M E T H O D  IN S M A L L - A N G L E  X-RAY S C A T T E R I N G  

is known, functions of scattering by other simple geo- 
metrical bodies which are widely used for modelling 
different structures (oblate and prolate ellipsoids of 
revolution, discs and other short cylinders) have not 
been given a proper representation and, therefore, the 
development of an analogous technique for them is ap- 
parently impossible. 

The author is indebted to Dr A. G. Malmon for 
kindly providing the working graph of the TMV small- 
angle scattering curve and to T. A. Erokhina for valu- 
able assistance in computing. The paper was translated 
into English in the Laboratory of Scientific Informa- 
tion, Institute of Protein Research, Academy of Scien- 
ces of the USSR. 
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There are a number of different Bloch wave labelling systems currently in use in the theory of the dif- 
fraction of electrons by crystals. It is suggested that the Bloch wave labelling scheme for electron dif- 
fraction which is the simplest and the most logical is an ordered labelling scheme in which the top 
branch of the dispersion surface corresponds to wave 1, the second branch to wave 2, the third branch 
to wave 3, and so on. Such a scheme would be consistent with accepted notations in other forms of 
Bloch wave propagation. The essential mathematical unity of all forms of wave propagation in crystals 
is discussed, and the use of the proposed notation in describing the critical voltage effect is briefly 
considered. 

1. Introduction 

In recent years it has become increasingly clear that 
the use of a many-beam theory of electron diffraction 
is essential for the quantitative interpretation of elec- 
tron micrographs of crystals taken using conventional 
100 kV microscopes, and for both qualitative and 
quantitative interpretation of micrographs taken using 
higher voltage instruments. However, no satisfactory 
labelling scheme has been established for identifying 
the various Bloch waves which represent the fast elec- 
tron within the crystal. A variety of such schemes exist 
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in the literature, and the purpose of this paper is to 
examine the situation and to propose a simple but 
unambiguous method of referring to the individual 
Bloch waves which it is suggested might be generally 
adopted. It is also unfortunately the case that the 
theory of electron diffraction has developed largely in- 
dependently from that of, for example, lattice vibra- 
tions and band theory. In this paper the essential unity 
of all forms of Bloch wave propagation in crystals will 
be emphasized, and the proposed notation will be cho- 
sen to be consistent with standard notations in related 
fields. 

2. Definition of the problem 

Consider an electron incident upon a perfect crystal. 
The wave function of the electron within the crystal 
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may, by Bloch's theorem, be represented by a Bloch 
wave of the form 

b(k,r)= ~ C~(k) exp{2z~i(k + g) . r} (1) 
g 

where the Bloch wave has been expanded in terms of 
the reciprocal-lattice vectors g of the crystal. In general, 
if n terms of the expansion are considered, the total 
electron wave function, ~(r), will be a linear superpo- 
sition of n such Bloch waves: 

n 

• (r) = ~Aq)~C~)exp{2~zi(k(1) + g).  r} (2) 
j = l  g 

where the excitation amplitude, A o9, of the j th  Bloch 
wave is determined by the boundary conditions at the 
crystal surface. The values of the Bloch wave coeffi- 
cients Cg °) and wave vectors k o) are determined in the 
usual manner (Bethe, 1928) by substitution of equation 
(2) into the Schr6dinger equation: 

8zc2m 
VZ~(r) + --h2-[E+eV(r)]~(r)=O (3) 

where E is the total electron energy and V(r) is the 
periodic lattice potential. 

Owing to the continuity of • and grad • at the 
crystal surface, the wave vectors k o) can differ only in 
their component normal to the crystal surface; this 
component will be denoted by k~, ). A plot in reciprocal 
space of the values of k~ as a function of the incident 
electron orientation for a fixed incident electron energy 
is known as a dispersion surface; the plot for a parti- 
cular value of j is known as the j th  branch (or sheet) 
of the dispersion surface. 

kxs S k±ls ! S S 1 
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Fig. 1. Dispersion surfaces for gold at 300°K for incident elec- 
tron energies of (a) 500 keV and (b) 1 MeV. The many-beam 
calculations took into account 20 systematic 111 reflections. 
The position kg=0-5g corresponds to the 111 Bragg re- 
flecting position; kg=g corresponds to the 222 Bragg posi- 
tion. S and A refer to symmetry points in the zone at which 
the Bloch waves are symmetric and antisymmetric respec- 
tively. The branches are numbered according to the scheme 
suggested in this paper, 

In developing the theory of dynamical electron dif- 
fraction, Bethe (1928) introduced the approximation of 
considering only the two most important Bloch waves. 
This 'two-beam' approximation has been widely used 
in the interpretation of electron micrographs, and in 
this approximation it is conventional to label the Bloch 
wave with the larger value of k~ ) as wave 2 (i.e. j is 
assigned the index 2) and the Bloch wave having the 
smaller wave vector is labelled wave 1. However, as 
mentioned in § 1, the two-beam approximation is often 
a very poor approximation, and for the quantitative 
and frequently also the qualitative interpretation of 
electron micrographs it is necessary to take into ac- 
count a number of diffracted beams using a many- 
beam theory. 

Various labelling systems have been suggested for 
identifying the Bloch waves in a many-beam theory, 
as the following examples show. Fujimoto (1959) sug- 
gested labelling as g and g' those dispersion surface 
branches having as asymptotes the spheres centred on 
reciprocal-lattice points g and h-g respectively. Howie 
& Whelan (1960) labelled the branch with the largest 
k~ value as branch 2, that with the second largest as 
branch 1, the third largest as branch 3, the fourth lar- 
gest as branch 4. Howie (1966) implicitly defined the 
Bloch waves in terms of their symmetry rather than 
their wave vectors: the scheme given in that paper im- 
plied that in terms of dispersion surfaces for 100 keV 
electrons, in order of decreasing k± values the branch 
numbers are 2, 1,4 and 3. Finally, it has been suggested 
(Humphreys, 1967) that the dispersion surface branches 
be numbered from the upper to the lower, i.e. 1,2, 3, 4, 
etc. in order of decreasing k j_. An example of this system 
is shown in Fig. 1. 

The various different Bloch wave labelling schemes 
currently in use in electron diffraction can only lead 
to confusion and a standard notation is highly desirable. 
Before discussing the relative merits of possible schemes 
for labelling Bloch waves in the specific field of elec- 
tron diffraction, the general theory of Bloch wave pro- 
pagation will be briefly examined. 

3. Wave propagation in crystalline materials 

By Bloch's theorem, any wave propagating in a peri- 
odic medium may be represented by a Bloch wave. 
Hence equations (1) and (2) apply to any type of wave 
motion in crystals. The particular wave equation which 
these Bloch wave solutions must satisfy depends on 
the particular form of the wave. For example the wave 
equation for 'quantum particles' is the Schr/Sdinger 
equation [equation (3)], for electromagnetic radiation 
is Maxwell's equations and for 'classical particles' is the 
usual classical wave equation. The mathematical solu- 
tion to all these problems is basically the same, and hence 
there is an essential unity in the theory of the thermal 
vibrations of crystals, the energy bands of conduction 
electrons, the diffraction of electromagnetic radiation, 
the diffraction and channelling of fast particles, etc. 



44 BLOCH WAVE N O T A T I O N  IN M A N Y - B E A M  E L E C T R O N  D I F F R A C T I O N  T H E O R Y  

Equations (1),(2) and (3) apply to both. the energy 
bands of crystals and to the diffraction of fast electrons, 
for example. In the former case E < 0, and the possible 
solutions of the Schr6dinger equation are convention- 
ally expressed in the familar E versus k curves of band 
theory. In electron diffraction theory, on the other hand, 
E is positive and the possible solutions are represented 
by the dispersion surface, as described in § 2. Thermal 
waves in crystals may be represented by the usual 
classical wave equation 

1 029 
V2~o - -v~ 3 t  z = 0 .  (4) 

Assuming the separable solution 

~p(r, t) = W(r) exp ( iwt )  

yields the following time-independent wave equation, 
which is equivalent to the Schr6dinger equation (3): 

14,2 
V 2 W (r)+ v2 ~(r) =0  (5) 

where v is the (periodic) phase velocity of the wave 
and ~(r) has the form of equation (2), except that it 
is conventional to call the phonon wave vector q in- 
stead of k. Solution of equation (5) gives the usual 
w versus q dispersion curves for lattice vibrations. 

These examples illustrate the fact that any wave pro- 
pagating in a periodic medium may be described by a 
linear combination of Bloch waves and that allowed 
solutions of the wave equation are conventionally repre- 
sented by dispersion surfaces. The essential unity of 
all wave propagation in periodic structures suggests 
that the choice of a Bloch wave labelling scheme for 
one particular form of wave propagation, in particular 
for electron diffraction theory, must be compatible 
with accepted notations for other forms of Bloch wave 
propagation. 

Excluding electron diffraction theory, two related 
labelling schemes have been generally adopted in the 
theory of Bloch wave propagation. If Bloch wave so- 
lutions to the wave equation are determined at sym- 
metry points in the Brillouin zone, then the Bloch 
waves are usually labelled according to the group re- 
presentation scheme proposed by Bouckaert, Smolu- 
chowski & Wigner (1936). Such a scheme is widely used 
in band theory in which the vast majority of calcula- 
tions refer to symmetry points in the zone. However, 
when calculations are made which do not refer to 
symmetry points, the Bloch wave solutions have no 
particular symmetry and the above labelling scheme 
cannot be used. In this case it is standard practice to 
label the Bloch waves in terms of their eigenvalues, 
that is with reference to E versus k curves in band 
theory, w versus q curves in phonon theory, etc., and 
to simply label the bands 1,2, 3,4, etc., in order. Such 
a scheme has been used in band theory for many years 
for referring to Bloch waves which have no particular 
symmetry. Similarly this scheme is widely used in the 
theory of lattice vibrations (see, e.g.,Van Hove, 1953), 

and Phillips (1956) has proposed that it be called the 
ordered labelling scheme. 

4. The critical voltage effect 

The existence of this effect in electron diffraction has 
considerable relevance to a discussion of Bloch wave 
labelling schemes and hence the effect will be briefly 
outlined. Nagata & Fukuhara (1967) found that at a 
certain value of the incident electron accelerating vol- 
tage (i.e. for a certain incident electron energy) the 
intensity of a second order Bragg reflection may ex- 
hibit a sharp minimum. This effect can be explained 
in terms of a contact between two dispersion surface 
branches at a symmetry point, tb.at is the two Bloch 
waves become degenerate at this particular electron 
energy (Nagata & Fukuhara, 1967; Metherell & Fisher, 
1969). The existence of contact points between branches 
is in fact a general effect and may lead to minima in 
reflexions other than second order (Lally, Humphreys, 
Metherell & Fisher, 1970). It should be pointed out 
that points of contact between dispersion surface 
branches are well known in other forms of Bloch wave 
propagation, as might be expected due to the essential 
unity of the theory outlined in § 3. For example, Her- 
ring (1937) has considered points of contact in the E 
versus k curves of energy band theory; Van Hove 
(1953) and Phillips (1956) have studied similar points 
of contact in w versus q phonon dispersion curves. 

lf, using the ordered labelling scheme, the point of 
contact occurs between the jth and ( j +  1)th dispersion 
surface branches, then at the critical voltage the j th 
and ( j +  1)th Bloch waves interchange their eigenvec- 
tors (i.e. the Fourier coefficients C(j ) and C(J +1) in 
equation (2) are interchanged), and hence the Bloch 
waves interchange their symmetries. Two such sym- 
metry interchanges between branches are shown in 
Fig. 1 to have occurred between 500 keV and 1 MeV. 
(Fig. 1 was computed using mean values of the data 
recently given by Doyle & Turner (1968) and Radi 
(1970), the Fourier coefficients of lattice potential were 
Debye-Waller corrected.) The application of the or- 
dered labelling scheme to identifying the Bloch waves 
both above and below the critical voltage is both. simple 
and unambiguous. A notation based on the symmetry 
of the Bloch waves could only be used at symmetry 
points in the zone and would be considerably com- 
plicated by the critical voltage effect. 

5. Bloch wave notation in electron diffraction theory 

Of the various labelling schemes used in electron dif- 
fraction theory which are described in § 2, the only 
two which are consistent with accepted systems in 
other forms of Bloch wave propagation are the one 
based on the symmetry of the Bloch waves and the one 
which uses an 'ordered' labelling scheme, as shown in 
Fig. 1. 

Whereas in band theory the majority of calculations 
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are performed at symmetry points in the Brillouin zone, 
in electron diffraction theory this is not the case. For 
example, in conventional 100 keV electron microscopy 
the crystal orientation normally used, because this 
provides the best electron transmission in bright field 
(Hashimoto, Howie & Whelan, 1962) is with the crys- 
tal set slightly positive of a Bragg reflecting position; 
the corresponding Block waves usually have no partic- 
ular symmetry at such a setting. With 1 MeV incident 
electrons the situation is different and although the 
crystal orientation which maximizes the electron trans- 
mission is often a point of symmetry (Humphreys & 
Lally, 1970), in many cases it is a point of no symmetry 
(Humphreys, Lally, Thomas & Fisher, 1970). 

It is possible that in electron diffraction calculations 
for points of very high symmetry a group represen- 
tation system may be desirable. However these points 
have in the past been of little interest to experimental 
electron microscopists and only a few theoretical cal- 
culations have been made. The authors feel that in 
general the labelling scheme for electron diffraction 
theory which is the most logical, simple and consistent 
with schemes in related fields is the system which labels 
the Bloch waves in terms of the dispersion surface in 
order of the magnitude of their k± component wave 
vectors, as shown in Fig. 1. Following Phillips (1956) 
it is suggested that this system be called the ordered 
labelling scheme. The use of such a scheme is entirely 
straightforward, and the authors suggest that this 
scheme be generally adopted in electron diffraction 
theory. 

Summary and conclusions 

(1) The essential mathematical unity of all wave 
propagation in periodic structures is illustrated and 
emphasized. 

(2) A brief discussion of the critical voltage effect 

is given and equivalent effects in other forms of wave 
propagation are stated. 

(3) It is suggested that the Bloch wave labelling 
scheme for electron diffraction which is the simplest 
and most logical, and which is consistent with accepted 
notations in other forms of Block wave propagation, 
is an ordered labelling scheme in which the top branch 
of the dispersion surface corresponds to wave 1, the 
second branch to wave 2, the third branch to wave 3, 
and so on. 
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A Note on the Correlation of the Heavy-Atom Positions in Different Isomorphous 
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In this note more accurate expressions are obtained for the Fourier coefficients of the iso-ano correlation 
function and the origin correlation function of Kartha & Parthasarathy. 

Introduction 

After obtaining the intensity data from the native 
protein and its isomorphous heavy atom derivatives 
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the first stage involved in the determination of the 
protein structure is the location of the heavy atoms in 
the derivative crystals. This is usually carried out in 
two steps, namely, (i) to obtain the coordinates of the 
heavy atoms in each derivative crystal and (ii) to 
correlate the positions of the heavy atoms in the differ- 
ent derivatives to a common origin. Kartha & Par- 


